CORRIGENDUM

Stability of thermocapillary flows in non-cylindrical liquid bridges

By Ch. Nienhüser and H. C. Kuhlmann
Journal of Fluid Mechanics, vol. 458 (2002), pp. 35-73

As pointed out by V. M. Shevtsova, the boundary condition (2.7c) for the interface $h(z)$ involving the hot-wall contact angle α contained an error. The correct equation is

$$
\begin{equation*}
\frac{1}{\Gamma} h^{\prime}\left(z=\frac{1}{2}\right)=-\tan \left(\alpha_{h}-\frac{1}{2} \pi\right) \tag{2.7c}
\end{equation*}
$$

The majority of the results are not affected, because the aspect ratio was $\Gamma=1$. Results obtained for a given volume fraction \mathscr{V} are correct, because (2.7c) was not used. Likewise, figure 24 and table 10 remain unchanged, because they were calculated for $\Gamma=1$.

The data for specified hot-wall contact angle α and $\Gamma \neq 1$ are corrected in the following. The corrected streamlines of figure 6 on p. 46 are shown here.

Figure 6 (corrected). Streamlines illustrating the existence of a hyperbolic stagnation point at aspect ratios slightly above the values given in table 3. (a) $\operatorname{Pr}=0.02, \operatorname{Re}=2000, \alpha=40^{\circ}, 70^{\circ}$. (b) $\operatorname{Pr}=4, \operatorname{Re}=800, \alpha=40^{\circ}, 70^{\circ}, 90^{\circ}$.

α (deg.)	$P r=0.02$ $R e=2000$	$P r=4$ $\operatorname{Re}=800$
40	1.51	1.24
70	2.34	1.70
90	$>2 \pi$	2.51

Table 3 (corrected). Aspect ratio Γ as function of the contact angle at which a hyperbolic stagnation point appears in the basic flow ($B o=G r=0$).

Figure 15 (corrected). Curves of neutral stability for $\operatorname{Pr}=0.02$ and $B o=G r=0$ as a function of the inverse aspect ratio $1 / \Gamma$. The full lines indicate $\alpha=70^{\circ}$, the dashed lines $\alpha=115^{\circ}$. The azimuthal wavenumber of the neutral curves are $m=1,2,3$ in increasing order from left to right, i.e. for decreasing aspect ratio.

Figure 23 (corrected). Curves of neutral stability for $P r=4$ and $B o=G r=0$ as a function of the inverse aspect ratio $1 / \Gamma$. The full lines indicate $\alpha=70^{\circ}$ and the dashed lines $\alpha=110^{\circ}$. The azimuthal wavenumber of the neutral curves increases for each set of curves with decreasing aspect ratio from left to right as $m=1,2,3,4$.

The aspect ratios for which a hyperbolic point appears in the flow for fixed Reynolds numbers (table 3 on p. 47) are given here in corrected form.

The corrected version of figure 15 on p. 57 shows that the shift with respect to Γ of the minima of the neutral curves is significant only for long bridges (large Γ). This can be understood in terms of an effective aspect ratio: the scaled neck radius for concave shapes is smaller than unity and varies from $h_{\min }\left(\alpha=70^{\circ}, \Gamma=0.4\right)=0.96$ to $h_{\min }\left(\alpha=70^{\circ}, \Gamma=2.9\right)=0.54$, while a convex shape represents a smaller effective aspect ratio, because the scaled maximum radius is larger than unity and varies from $h_{\min }\left(\alpha=115^{\circ}, \Gamma=0.4\right)=1.04$ to $h_{\min }\left(\alpha=115^{\circ}, \Gamma=3\right)=1.37$.

The discussion of the corrected figure 23 on p. 64 does not need to be changed.

